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Abstract 

The representation of typical weather conditions is well 

understood, but the resilient design and operation of 

buildings is influenced by extremes. Here, we advance the 

proposal of eXtreme Meteorological Years (XMYs), first 

introduced by Crawley & Lawrie in 2015, bounding the 

peak building energy performance for space heating and 

cooling with a single, composite year. 

Past XMYs formulations have been shown to work for 

several climates, but not all, and this work seeks to 

address this while improving XMYs performance. The 

novel quantile approach based on degree days shows that 

XMYs can bound energy performance within 

±5 kWh·m-2·a-1. These results demonstrate XMYs can 

reliably bound performance to a degree compatible with 

decision-making for building design and operations. 

Key Innovations 

• Devised a new approach for XMYs research and 

development. 

• Established XMYs performance expectations given 

variability in the response of the building stock to 

weather. 

• Proved the feasibility of the XMYs concept to bound 

peak annual energy demands in a single weather file. 

• Developed a new formulation for XMYs that 

overcomes past barriers of applicability across climate 

zones in ANSI/ASHRAE Standard 169-2021. 

Practical Implications 

We advanced the XMY concept that bounds the multi-

year performance of buildings' heating and cooling energy 

demand in a single-year composite weather file. 

Capturing extremes allows appraising resilience, and 

doing so in this way removes barriers to practical 

applications as it is compatible with established 

workflows built on single-year composite weather files 

like TMYs, which are commonplace worldwide. 

Introduction 

A decarbonized built environment is key to climate 

change mitigation and adaptation, yet buildings still 

consume 29% of the global primary energy, mainly due 

to space conditioning demand. As the climate changes, 

there is a need to closely and rigorously map the boundary 

conditions of buildings to facilitate learning from typical 

and atypical weather events (Crawley and Lawrie 2021). 

The representation of typical weather conditions is well 

understood, but resilient design and operation of buildings 

is also influenced by responses to extremes (Herrera et al. 

2017). This could be assessed through multi-year weather 

files, but such an approach is computationally intensive 

and onerous for conceptual design. Another approach is 

the consideration of extreme weeks, since it provides a 

familiar reference frame to visualize the impacts of a 

heating climate (Coley, Liu, and Fosas 2022, Ramallo-

González et al. 2020). However, established practices 

favor year-long appraisals of performance that are directly 

compatible with existing workflows in building energy 

modelling (Herrera et al. 2017, Rostami, Green-

Mignacca, and Bucking 2024). Hence, this work advances 

the proposal of eXtreme Meteorological Years (XMYs), 

weather files that bound the building energy performance 

for space heating and cooling with a single, composite 

year. 

The representation of climatic data for building 

performance simulation as XMYs was first introduced by 

Crawley & Lawrie (2015). Conceptually, XMYs build on 

the well-established approach of Typical Meteorological 

Years (TMY), which successfully represent prevailing 

meteorological conditions present over long periods using 

a single, composite-year weather file. However, XMYs 

purposely select more extreme weather periods (e.g., 

months, seasons) to bound the performance present in the 

same multi-year period of record on which they are based.  

Past methods for creating XMYs were proposed by 

Crawley and Lawrie (2019, 2015) and Gasparella et al. 

(2021). Each used seasonal extremes to assemble them. 

These approaches work well for most locations, 

particularly those with significant seasonal variation 

throughout the year. These methods do not work well 

where temperatures are more constant throughout the 

year, such as Singapore and other tropical locations. 

According to the seasonal methods, the extreme months 

are selected to maximize or minimize over a 6-month 

period a seasonal weather variable, in this case, dry bulb 

temperature. 

This work formalizes a research and development 

framework for XMYs, proves their feasibility, and derives 

new selection rules that can be applied to any location in 

the world while retaining usefulness for practical 

applications. 

Methods 

The method to create XMYs is based on high-quality, 

long-term weather observations that collectively 

characterize representative climatic conditions for 

building performance simulation. Multi-year weather data 

is then used to estimate a building’s response year on year, 
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which will vary accordingly to weather conditions in the 

absence of other variations (e.g., occupancy, building 

operations). Both the multi-year weather and 

corresponding building energy demand databases are then 

used to establish the feasibility of XMYs as a weather file 

family, and to establish user-friendly formulations that are 

meaningful to building energy modelling users to appraise 

resilience and inform building design and operations. 

Weather data source 

We considered a set of 36 locations (Table 1) 

representative of those in ANSI/ASHRAE 169-2021  

 

Table 1: Locations (data: ANSI/ASHRAE 169-2021) 

Location Climate Zone HDD18 CDD10 

ARE - Dubai 0B 9 6,609 

ARG - Buenos Aires 3A 862 3,001 

AUS - Alice Springs 2B 676 4,144 

BOL - La Paz 5A 3,841 41 

BRA - Brasilia 2A 16 4,462 

BRA - Florianopolis  2A 195 4,173 

BRA - Sao Paulo 2A 206 3,914 

CAN - Winnipeg 7 5,697 1,039 

CAN - Resolute Bay 8 12,082 3 

CAN - Toronto 5A 3,779 1,460 

CHN - Shijiazhuang 4B 2,387 2,736 

CHN - Hohhot 6B 4,416 1,500 

CMR - Yaoundé 1A - 5,316 

DEU - Frankfurt 5A 2,854 1,379 

DZA - Tamanrasset 2B 437 4,623 

EGY - Cairo 2B 311 4,717 

ESP - Madrid 3B 1,909 2,233 

FIN - Helsinki 6A 4,637 738 

GBR - London 4A 2,434 1,187 

GBR - Glasgow 5A 3,352 597 

GRC - Athinai 3A 1,259 2,976 

IND - New Delhi 1B 284 5,749 

IND - Ahmedabad 0B 10 6,580 

MAR - Marrakesh 2B 600 3,937 

NZL - Wellington 3A 1,759 1,430 

SGP - Singapore 0A - 6,689 

TUR - Van Feritmelen 5C 3,400 1,336 

TZA - Kilimanjaro 1A 1 5,158 

USA - Denver 5B 3,263 1,672 

USA - Atlanta 3A 1,432 3,063 

USA - Honolulu 1A -   5,664 

USA - Sioux City 5A 3,716 1,782 

USA - Arlington 4A 2,142 2,558 

USA - Washington 4A 2,532 2,178 

USA - Seattle 4C 2,567 1,193 

ZAF - Cape Town 3C 848 2,637 

(2021). These showcase the 10 climate zones as well as 

diverse geographical conditions. Using the multi-year 

hourly weather data series from NOAA’s ISD (Smith, 

Lott, and Vose 2011) and solar radiation from the ERA5 

reanalysis data set (Soci et al. 2024), we created 

individual MYs (Meteorological Years). From these 

individual MYs, we created typical meteorological years 

(TMYs) according to the technical standard EN ISO 

15927-4:2005 (BS 2005). These MYs were also used in 

the XMYs development method described next. 

XMY definition and feasibility 

XMYs are based on the hypothesis that it is possible to 

capture in one single-year composite weather file the 

extreme response of buildings observed in a multi-year 

dataset in terms of annual energy demand – the most 

widely used key performance indicator in energy 

assessments. Further, there is interest in capturing both 

heating and cooling extremes. Owing to the diversity of 

the building stock worldwide and their end-uses, it is 

recognized that XMYs should capture likely extreme 

conditions. XMYs cannot be expected to always capture 

extreme responses but near-extreme responses, as 

different buildings in the same location can display peak 

energy consumption in different years, according to their 

design characteristics and operational strategies. 

The existence of near-extreme conditions that (1) 

generalize to diverse buildings and (2) are close enough 

to extreme conditions to be useful for practical 

applications is explored in this work. Here, a diverse 

collection of reference buildings is simulated for each 

year of the previously established climate database. The 

result is a buildings’ response database that is used to: 

1. Evaluate the assumption that for every location, there 

exists a single year that displays the maximum energy 

consumption across all buildings. This entails 

querying the database to obtain the years at which 

building responses peaked and to check whether these 

remain the same for all buildings when grouped by 

location. As argued, this is a test that is expected to 

fail, but the fraction of locations where this condition 

is satisfied provides meaningful context to gauge 

XMY performance expectations. 

2. Evaluate the assumption that there is a common set of 

year(s) across all building types for the nth greatest 

energy use. This requires finding the common year 

across all building types in the same location where 

energy consumption is the highest. This value for 

energy consumption can then be compared with the 

peak one for each building type to establish expected 

absolute (kWh·m-2·a-1) and relative tolerances 

(percentage and percentile). 

Collectively, these tests establish ahead of time the 

feasibility of the XMY concept: what would be the 

optimal performance expectations, and whether such 

expectations are compatible with meaningful building 

energy performance assessments in practice. 
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Figure 1: Flexible definition of heating and cooling seasons across samples in all ASHRAE 169-2021 climate zones: 

proportion of HDD and CDD per month (red: HDD relative influence, blue: CDD ones)

XMY creation 

Weather file creation strategies need to be generalizable 

to diverse building stocks, not just one building type. This 

leads to the idea that, for weather files type formulations 

to be useful, they need to be solely dependent on weather 

information (and by extension, climate). Otherwise, there 

is no advantage to having a single-year weather file type 

because modelers would, in such a scenario, have to 

undertake simulations across all available years. Given 

that overall weather-related energy use of buildings is 

primarily determined by space conditioning, we first turn 

to Heating and Cooling Degree Days (HDD and CDD, 

respectively) as well-established proxies for building 

energy use in the literature (ASHRAE 2021, CIBSE 

2006). It has been demonstrated in the context of TMYs 

and auxiliary analyses conducted as part of this work that 

other weather variables, like solar radiation or wind 

speed, only contribute to a small fraction of the variability 

in energy performance results.1 

Climate data shows that there exist all possible 

combinations of buildings with/without heating/cooling 

requirements. Having locations solely dominated by 

heating or cooling requirements and options in between 

means that overall energy consumption may be dominated 

by space heating alone, space cooling alone, or a 

combination of both. 2  This gives rise to the well-

established notion of seasonality, but in the context of 

XMY work, and contrary to past approaches, a flexible 

definition of heating and cooling seasons across locations 

in the world is needed. XMYs are required to be 

composite years like other types of weather files, such as 

TMYs. Informed by previous work on XMYs, this one 

 
1 Owing to space constraints, auxiliary analyses are not 

included, please see report on TMYs for an in-depth 

overview and discussion (Wilcox and Marion 2008). 
2  In a way, locations that do not require heating nor 

cooling are not in scope for XMYs since energy 

assumes that monthly intervals will provide enough 

resolution to capture seasonality and to establish the 

existence of XMYs. The basis for selecting each month in 

the composite year is linked to heating and/or cooling 

requirements and must approximate observed extreme 

annual energy demand in the multi-year building 

performance database. 

Here, a simple formulation for heating and cooling 

seasons is established through HDD and CDD as 

continuous periods in a year where one or the other 

dominates (Figure 1, baseline temperatures for both are 

18°C). XMY creation will be allowed to make use of this 

information for the routine that selects months in the 

multi-year weather database. It is important to consider 

that performance is established in annual energy demands 

(heating, cooling, total), meaning aggregated over the full 

composite year. The reason is that there are locations 

where monthly metrics for HDD and CDD show 

significant contributions to both, and there is an ambition 

to have a simple, intuitive formulation of XMYs. 

Having established initial conditions that enable the 

definition of XMYs, the next step is to define the 

algorithm that selects months in the multi-year weather 

database to create the composite year. There is no single 

way to explore this, and this work opted for a first-

principles, simple formulation (recipe) based on educated 

estimates that bound the performance of XMY 

candidates. This favored a quantile-based XMY recipe: 

1. If months with the highest HDD/CDD (as informed 

by the flexible season definition) are selected across 

all months in the relevant season, the resulting XMY 

will deliver an energy demand well above the 

performance would be expected to be uncorrelated to 

weather conditions. If they were, such buildings would 

represent a small proportion across the building stock of 

interest and would warrant bespoke explorations of 

performance. 
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maximum on record in the building performance 

database. The reason is that it is highly unlikely that 

the year with the peak space heating/cooling demand 

includes the most extreme months on record for the 

entire heating/cooling season. Hence, a quantile of 

100 is considered a theoretical upper bound. 

2. If months with the lowest HDD/CDD (as informed 

by the flexible season definition) are selected across 

all months in the relevant season, the resulting XMY 

will deliver an energy demand that is well below the 

minimum on record in the building performance 

database. Hence, a quantile of 0 is considered a 

theoretical low bound. 

3. It follows that there must be a quantile in between 

these extremes that selects months that, bundled in a 

weather file and used in building performance 

simulation, approximate the peak space heating and 

space cooling demand of the building. 

A quantile-based definition using only HDD and CDD 

requires a single training parameter, the quantile 

threshold. For simplicity, the same quantile is used for all 

months and both seasons. The question then becomes if 

such a simple approach generalizes well across all 

buildings in a location. 

For the framework to evaluate possible formulations for 

XMYs, we used the building energy demand database as 

a lookup table. This database is built by simulating all 

reference building types across all years available for all 

locations across all climate types. Parallel to this, a lookup 

table was built for all location-year-month combinations 

with precomputed HDD and CDD. For any given XMY 

formulation, like the quantile-based one introduced, all 

that is needed is the implementation of the algorithm that 

builds a composite year from values precomputed in the 

weather lookup table. Since all possible results are 

precomputed in the building energy demand database, 

performance is approximated by selecting and 

aggregating precomputed results. 

XMY validation 

Given an XMY formulation, the validation consists of: 

1. Creating an explicit EPW file that represents the 

XMY – one per location. In the method presented 

here, this is defined solely by the quantile used to 

choose months and the flexible heating/cooling 

season definition; and 

2. Using said XMYs to simulate all buildings. 

Although seemingly identical to the process to find 

suitable formulations of XMYs, this approach ensures 

continuity in the annual building simulation, since using 

lookup tables presumes the response in any given month 

is independent of the month preceding it (this may or may 

not be the case, depending on the response time of the 

building). By comparing these results with the first 

approximation, the validity of the method can be 

established as a way of anticipating outcomes reliably. 

Analysis 

The previous establishes the foundation for XMY work. 

At the same time, there is value in comparing the 

performance of XMYs against established approaches for 

TMYs to contrast extreme responses with expected 

typical ones, as well as contrasting the variability in both 

contexts. In particular, the following is considered of 

interest to frame practical applications of this work: 

1. MYs: Full range of building response by considering 

long-term records of Meteorological Years. 

2. XMYs: Building response with XMYs. This will 

evaluate the extent to which XMYs approximate 

peak energy demands obtained in the MYs set. 

3. TMYs-all: Building response with TMYs built with 

the full set of MYs. This will evaluate the extent to 

which TMYs capture the average energy demand 

obtained in the MYs set. 

4. TMYs-recent. Building response with TMYs built 

with the MYs records for the last 15 years. This will 

contextualize the effects of climate change on the 

average energy demand. 

Reference buildings 

This work uses four of the “U.S. Department of Energy 

Commercial Reference Building Models of the National 

Building Stock”: Midrise Apartment, Medium Office, 

Small Office, and Primary School (see Deru et al. (2011) 

for details about model inputs and outputs across all 

reference building models and their relative changes). 

EnergyPlus version 24.2 (2024) model variants for each 

location were implemented to reflect ASHRAE Standard 

169-2021 climate zones and to size systems according to 

statistics in long-term records as per ASHRAE methods. 

Energy end-uses are classified from within the models 

using EnergyPlus “Meter” features to aggregate all 

relevant variables. 

 

Figure 2: Example of multi-year performance - energy consumption of the Medium Office Building (London) 
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Figure 3: Overview of sampled (n=4) maximum and minimum energy demand for cooling per building type/location 

Results and discussion 

This section presents results and discussion together 

because each step influences subsequent ones. Mapping 

to the objectives, these are organized around the overview 

of building energy performance, XMY feasibility and 

performance, and global remarks. 

Overview 

The study yields 8916 cases: arising from the combination 

of 36 locations, 4 building types, and 62 years, on average, 

of weather data available for each location (the number of 

years per location varies according to data availability and 

quality). For each location-building pair, multi-year 

energy performance is disaggregated according to energy 

end-use (Figure 2), and results are stored in the building 

energy performance database at a monthly resolution to 

then establish lookup tables. 

XMY feasibility 

The feasibility of the XMY concept rests on the interval 

between minimum-maximum energy demand across 

years for each location-building pair, and the variability 

in peak energy demands. Figure 3 shows an overview of 

this analysis for cooling. The resulting energy demand 

intensity (kWh·m-2·a-1) is displayed for all 8 cases, 4 for 

the smallest ones and 4 for the largest ones. 

The questions around XMY feasibility rest on whether (a) 

results for the largest energy demand across building type 

arose in the same meteorological year or (b) that all the 

nth largest demands that came from the same year across 

all building types is sufficiently close to their peaks as to 

represent a negligible difference for decision-making. 

About (a), results indicate that minima and maxima per 

location are shared across building types in 26/36 of the 

locations for peak heating energy demand and 23/36 for 

cooling. Hence, and as expected, there is no single year 

for every location that leads to peak energy 

heating/cooling energy demand in the multi-year period 

because weather impacts different buildings differently. 

About (b), finding the same year that caused the largest 

energy demand for heating/cooling per location across all 

building types showed significant variability. As 

indicated above, there is a single year for 26/36 locations 

that caused the peak demand for heating, and another for 

23/36 for cooling. The case with the poorest fit for heating 

was that of Honolulu, where the n-largest year was the 

16th year (1955). This meant that 1955 was the common 

year to all 4 building types that had the largest energy 

demand for heating. Here, heating energy demand peaked 

in 3 building types, but represented the 83rd quantile for 

the medium office. Similarly, for cooling, the poorest fit 

was Resolute Bay, with year 22nd (1968), corresponding 

to quantiles 71 to 95 across all four building types. 

Based on the analysis, it was possible to estimate that 

XMYs are feasible to identify peak energy demands 

within ±5 kWh·m-2·a-1 when said demands are greater 

than 20 kWh·m-2·a-1. The latter represent very low-energy 

buildings, and, at such levels of performance, tolerances 

cease to be informative, and buildings are rather 

insensitive to weather conditions. 

Overall, this near-extreme approximation is judged 

acceptable for decision-making in building energy 

modelling, given its magnitude. 

 

Figure 4: Performance of different quantiles in capturing near-extreme energy demands (left: global results across all 

quantiles with a step size of 1; right: zoomed view of the region with best performance marked with darker background)
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XMY performance 

As presented in the methods section, a novel take for 

XMYs in this study is the consideration of a flexible 

heating/cooling season definition (Figure 1). This, based 

on the proportion of HDD and CDD per month over all 

years in the dataset, was introduced to cater for the 

diversity of climate zones featured across all continents, 

since there are locations clearly dominated by heating or 

cooling year-round (e.g., Resolute Bay and Dubai, 

respectively), and all options in-between (e.g., Buenos 

Aires, New Delhi, Cairo). In both HDD and CDD 

calculations, the chosen baseline temperature was 18 °C 

as an initial value to explore in this study. Since the 

resulting seasons are exclusively based on location and 

weather data, it was considered within the restrictions of 

using information that is agnostic to building stock 

characteristics. 

This novel recipe for XMYs based on quantiles was then 

implemented, using only HDD/CDD information, with 

HDD or CDD prioritized according to heating and cooling 

seasons. Given the exploratory nature of this work, all 

possible quantiles were scored based on the percentage of 

cases that meet the tolerances that make XMY-type 

definitions feasible (Figure 4). 

The overall trend across quantiles showcases the 

reasoning in the methodology of an interval where 

performance peaks in between the extremes (Figure 4). 

Considering an XMY made up by months that displayed 

peak energy demands (maxima at quantile 100) shows a 

poor performance: this represents an extreme not 

observed in the multi-year dataset. Similarly, choosing the 

warmest months for heating and coolest for cooling also 

deteriorates performance (minima at quantile 0). 

The optimal interval is located at about the 95th quantile, 

peaking for the 96th and 93rd (Figure 4). The reason for 

multiple solutions is that energy demands for heating and 

cooling are aggregated annually, not just within the 

relevant season. This is because buildings can display 

heating and cooling energy demands within the same 

month in some locations. Attempting definitions that meet 

energy demand, making exclusive use of the period within 

the relevant season, would fail for such locations, and it 

would lead to artificially extreme seasons for the rest. 

Since the interpretability of single-year composite 

weather files is considered an important feature for XMYs 

(particularly since the monthly composition is familiar to 

TMY users), such an approach is deemed not only 

appropriate but desirable.

 

(b) Heating 

 

(b) Cooling 

Figure 5: Overview of energy demand across all locations, building types, and XMY and TMYs performance
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Based on the previous results, the 96th quantile was 

selected as the optimal one. This represented an 

approximation to the true solution as the score is 

estimated using the lookup table built with the results of 

the multi-year simulations (all 8916 cases). Next, weather 

files were built using the EnergyPlus EPW file format 

based on the selected months with the quantile recipe. 

Simulations were then run with these weather files (144 

cases, arising from 36 locations and 4 building types). 

Results for energy demands were extracted and compared 

to expectations based on the lookup tables. The 

approximation was here observed to be excellent, with an 

error under 0.5 kWh·m-2·a-1 for both heating and cooling 

demands. 

Overall results show the performance of the XMYs 

selected for the 96th quantile in the context of the multi-

year range obtained via simulation of meteorological 

years (MYs) (Figure 5). Results are also contextualized 

by the two sets of TMYs: those that consider all MYs in 

the weather database (the average of 62 years per 

location), denoted ‘TMY all’, and those that consider only 

the last 15 years, denoted ‘TMY recent’. 

As expected by the score of 98 (Figure 4), XMYs 

approximate well 282 cases of the 288 total (36 locations 

× 4 buildings × 2 modes, heating and cooling). This is 

considering valid tolerances of ±5 kWh·m-2·a-1 for cases 

with energy demands above 20 kWh·m-2·a-1. The 6/288 

cases that do not satisfy the criteria are: 

1. Winnipeg (climate class 7) – Primary School: absolute 

tolerance is +6 kWh·m-2·a-1 for a heating demand of 

92 kWh·m-2·a-1 (6%). 

2. Resolute Bay (climate class 8) – Medium Office: 

absolute tolerance is +8 kWh·m-2·a-1 for a heating 

demand of 105 kWh·m-2·a-1 (8%). 

3. Resolute Bay (climate class 8) – Small Office: 

absolute tolerance is +6 kWh·m-2·a-1 for a heating 

demand of 145 kWh·m-2·a-1 (4%). 

4. Resolute Bay (climate class 8) – Small Office: 

absolute tolerance is +20 kWh·m-2·a-1 for a heating 

demand of 281 kWh·m-2·a-1 (7%). 

5. Shijiazhuang (climate class 4B) – Primary School: 

absolute tolerance is –6 kWh·m-2·a-1 for a heating 

demand of 45 kWh·m-2·a-1 (-11%). 

6. Marrakesh (climate class 2B) – Primary School:  

absolute tolerance is –7 kWh·m-2·a-1 for a heating 

demand of 36 kWh·m-2·a-1 (–18%). 

Global remarks 

The sequencing of decisions to arrive at the formulation 

for XMYs may be argued to be influential to outcomes 

and needs further justification in the face of alternatives. 

For example, different or additional variables to HDDs 

and CDDs, time intervals other than months, or 

alternative heuristics. The approach developed here may 

be suboptimal compared to alternatives such as black-box 

or machine-learning ones. However, this is not an issue 

here since the approach first showed the allowable 

tolerances that must be accepted for XMYs to exist and 

that are independent from specific formulations. In 

addition, the quantile-based heuristic seems successful 

enough (282/288 cases), and performance appears even 

better than those of TMYs in the dataset, which are often 

not centered in the intervals (‘TMY all’). 

Considering ‘TMY all’ against ‘TMY recent’ shows how 

the latter are getting distinctively warmer, as already 

noted by Crawley & Lawrie (2021). Similarly, 

meteorological records considered for XMY creation 

could focus only on recent years to capture the effects of 

a heating climate. The implications for the quantile-based 

formulation would then warrant further analysis. For this 

reason, we considered long-term records, with an average 

of 62 years per location. Thus, the smallest step for this 

approach is 1/62, or about 1.6. Focusing on the last 15 

years would mean 1/15 or 6.6, so the second-highest 

option would be the 93rd quantile – a significant loss in 

resolution to find optimal fits. 

Limitations and future work 

Concerning XMYs, the following ideas are noted. 

1. This study has established that it should be possible to 

achieve XMYs with a tolerance of ±5 kWh·m-2·a-1 for 

cases with demands above 20 kWh·m-2·a-1. However 

close, this work did not meet these criteria for all 

cases. Other XMY formulations would be worth 

exploring using the framework established here. 

2. A fixed definition could be easier for end-users to get 

familiar with, as it would be similar across all 

locations in the world (save monthly composition). It 

would be worth evaluating how the flexible seasonal 

definition for heating and cooling compares to the 

fixed one of 6-month intervals in previous studies. 

3. This work used a single baseline definition for HDD 

and CDD at 18 °C. It would be worth exploring the 

influence of this decision, and if having a deadband as 

wide as thermal comfort might allow for would lead 

to noticeable differences in performance. 

4. The building characteristics for each building type 

here yielded low energy ones – those with demands 

for heating and cooling under 20 kWh·m-2·a-1. As 

shown, the multi-year variability in results is too small 

to be meaningful for resilience appraisals and thus 

considered outside the scope of interest for XMY 

work. Future work should include buildings with 

higher demands, as that is more representative of the 

existing, more vulnerable building stock worldwide. 

5. Extend validation routines to locations not considered 

in the testing and development of XMYs. 

For the quantile approach developed here: 

1. This recipe peaked at a score of 98 when forcing all 

months in the selection to belong to the same quantile 

and for both heating and cooling. Relaxing these 

conditions might improve performance. 

2. A multivariate formulation may be included to 

consider solar radiation or windspeed, as it has been 

argued necessary for other families of weather files 

like TMYs. Although selections are dominated by air 

temperature, further variables may help given issues 

at climate zones 7 and 8. 

https://doi.org/10.26868/25222708.2025.1500
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Conclusions 

This work advanced the definition of eXtreme 

Meteorological Years (XMYs), which captures the peak 

energy demands for building heating and cooling across 

years on record with a single-year composite weather file. 

Building on past research on them, it has: 

1. Demonstrated that XMYs formulations are feasible 

despite different buildings not displaying peak energy 

demands on the same years, with a tolerance of 

±5 kWh·m-2·a-1 for cases with demands above 

20 kWh·m-2·a-1 being established as a result and 

expected, which is negligible in practical applications. 

2. Established a framework that allows the rapid 

development, testing, and validation of different XMY 

recipes. 

3. Found a simple formulation based on quantiles that 

works for 98% of cases considered here, and 

4. Identified new opportunities for XMY development. 
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